Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Basic connection between superconductivity and superfluidity

Identifieur interne : 001F14 ( Main/Exploration ); précédent : 001F13; suivant : 001F15

Basic connection between superconductivity and superfluidity

Auteurs : Mario Rabinowitz [États-Unis]

Source :

RBID : ISTEX:2EC2FEE79B678ADB42518A82E3593749BD26AC86

English descriptors

Abstract

Abstract: A basic and inherently simple connection is shown to exist between superconductivity and superfluidity. It is shown that the author's previously derived general equation, which agrees well with the superconducting transition temperatures for the heavy-electron superconductors, metallic superconductors, oxide superconductors, metallic hydrogen, and neutron stars, also works well for the superfluid transition temperature of 2.6 mK for liquid3He. Reasonable estimates are made from 10−3 to 109 K — a range of 12 orders of magnitude. The same paradigm applies to the superfluid transition temperature of liquid4He, but results in a slightly different equation. The superfluid transition temperature for dilute solutions of3He in superfluid4He is estimated to be ∼l–10μK. This paradigm works well in detail for metallic, cuprate, and organic superconductors.

Url:
DOI: 10.1007/BF00673760


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Basic connection between superconductivity and superfluidity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2EC2FEE79B678ADB42518A82E3593749BD26AC86</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1007/BF00673760</idno>
<idno type="url">https://api.istex.fr/ark:/67375/1BB-BW8L2HZM-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000061</idno>
<idno type="wicri:Area/Istex/Curation">000061</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C78</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C78</idno>
<idno type="wicri:doubleKey">0020-7748:1993:Rabinowitz M:basic:connection:between</idno>
<idno type="wicri:Area/Main/Merge">002003</idno>
<idno type="wicri:Area/Main/Curation">001F14</idno>
<idno type="wicri:Area/Main/Exploration">001F14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Basic connection between superconductivity and superfluidity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Electric Power Research Institute, 94303, Palo Alto</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal of Theoretical Physics</title>
<title level="j" type="abbrev">Int J Theor Phys</title>
<idno type="ISSN">0020-7748</idno>
<idno type="eISSN">1572-9575</idno>
<imprint>
<publisher>Kluwer Academic Publishers-Plenum Publishers</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1993-04-01">1993-04-01</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="565">565</biblScope>
<biblScope unit="page" to="574">574</biblScope>
</imprint>
<idno type="ISSN">0020-7748</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0020-7748</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Boson</term>
<term>Coherence length</term>
<term>Condensation temperature</term>
<term>Cooper pairing</term>
<term>Different equation</term>
<term>Effective mass</term>
<term>Experimental value</term>
<term>Fermi</term>
<term>Fermi atoms</term>
<term>Fermi electrons</term>
<term>Fermi energy</term>
<term>Fermion</term>
<term>First approximation</term>
<term>Heavy fermion superconductors</term>
<term>International journal</term>
<term>Interparticle spacing</term>
<term>L3he</term>
<term>Magnetic field</term>
<term>Metallic hydrogen</term>
<term>Metallic superconductors</term>
<term>Neutron stars</term>
<term>Number density</term>
<term>Overall number density</term>
<term>Oxide superconductors</term>
<term>Pairing</term>
<term>Particle pair</term>
<term>Physical review</term>
<term>Physical review letters</term>
<term>Rabinowitz</term>
<term>Rocket ship</term>
<term>Same paradigm</term>
<term>Singlet state</term>
<term>Superconductivity</term>
<term>Superconductors</term>
<term>Superfluid</term>
<term>Superfluid transition</term>
<term>Superfluid transition temperature</term>
<term>Superfluidity</term>
<term>Theoretical physics</term>
<term>Triplet state</term>
<term>Upper limit</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A basic and inherently simple connection is shown to exist between superconductivity and superfluidity. It is shown that the author's previously derived general equation, which agrees well with the superconducting transition temperatures for the heavy-electron superconductors, metallic superconductors, oxide superconductors, metallic hydrogen, and neutron stars, also works well for the superfluid transition temperature of 2.6 mK for liquid3He. Reasonable estimates are made from 10−3 to 109 K — a range of 12 orders of magnitude. The same paradigm applies to the superfluid transition temperature of liquid4He, but results in a slightly different equation. The superfluid transition temperature for dilute solutions of3He in superfluid4He is estimated to be ∼l–10μK. This paradigm works well in detail for metallic, cuprate, and organic superconductors.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2EC2FEE79B678ADB42518A82E3593749BD26AC86
   |texte=   Basic connection between superconductivity and superfluidity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021